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Abstract. We examine the effects of a phenomenological pseudogap on the T = 0 K phase diagram of a
high temperature superconductor within a self-consistent model which exhibits a d-wave pairing symmetry.
At the mean-field level the presence of a pseudogap in the normal phase of the high temperature supercon-
ductor is proved to be essential for the existence of a metallic–like state in the density versus interaction
phase diagram. In the small density limit, at high attractive interaction, bosonic–like degrees of freedom
are likely to emerge. Our result should be relevant for underdoped high temperature superconductors,
where there is a strong evidence for the presence of a pseudogap in the excitation spectrum of the normal
state quasiparticles.

PACS. 74.20.Fg BCS theory and its development – 74.20.-z Theories and models of superconducting
state – 74.60.-w Type-II superconductivity – 74.72.-h Cuprate superconductors (high-Tc and insulating
parent compounds)

1 Introduction

One of the latest addition to the already very reach phase
diagram of high temperature superconductors (HTSC)
is represented by the so called pseudogap line (T =
T ∗). However, such a line is not well defined, and it
should be understood more as a boundary limit which
divides HTSC’s temperature–density phase diagram into
two distinct regions [1]. At temperatures Tc < T < T ∗
(Tc represents the critical temperature for the normal–
superconducting phase transition) and low doping, HTSC
display a gap in the energy spectrum of the single-particle
excitations associated to the normal state. Usually ad-
dressed as the pseudogap, this anomalous property of
HTSC was originally seen in direct measurements of the
single particle excitation spectra in angle resolved photoe-
mission spectroscopy (ARPES) [2] and tunneling experi-
ments [3]. The origin of the pseudogap in HTSC above
the transition critical temperature Tc is not clear, as it is
not clear its connection to the superconductivity phenom-
ena. However, the symmetry of the pseudogap follows the
superconducting gap symmetry and is of d-wave type [2].
The characteristic temperature T ∗ decreases with increas-
ing the doping, eventually intersecting the T = 0 line
at a universal critical point [4]. The existence of such a
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critical point in the cuprates phase diagram is still under
debate, different approaches relying on the fact that the
T ∗ line merges with the Tc line at a doping value of the
order of the optimal doping, where the transition temper-
ature Tc has its maximum [1]. Different authors [5–7] sug-
gest that the pseudogap and superconductivity in HTSC
have the same cause, the idea of preformed pairs being of
main importance to these theories. Other theories relate
the pseudogap to antiferromagnetic fluctuations [8], spin-
charge separation [9], or incommensurate charge–density–
wave instabilities [10].

Experimental data for both normal and superconduct-
ing state in HTSC prove that standard theories such as
the Fermi liquid theory of metals and BCS theory of su-
perconductivity fail to correctly describe the physics of
these materials. Such a behavior is attributed to the fact
that correlations in HTSC are much stronger than in stan-
dard superconductors. In particular, the small coherence
length of the Cooper pairs measured in HTSC (typically
about 10–20 Å) suggested that HTSC belong to a class of
compounds which can be viewed in a crossover regime be-
tween BCS superconductivity and Bose-Einstein conden-
sation (BEC). From the theoretical point of view, the pos-
sibility of a crossover interpolation between BCS and BEC
behavior was suggested previous to the HTSC discovery
by Eagles [12] and latter on developed by Leggett [13], and
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Noziéres and Schmitt–Rink [14]. More recently, various
authors [15] discussed the HTSC phase diagram in terms
of a BCS–BEC crossover, with the main conclusion that
at least for the underdoped region of the phase diagram a
BEC–like description is more appropriate to account for
their unusual properties. On the other hand one should
mention that ARPES data prove that below T ∗ the pseu-
dogap opens only around the M points in the Brillouin
zone, other regions of the Fermi surface being gapless. To
account for such a behavior, one should consider a model
with strong correlations around the M points and a weak
interaction for the rest of the Brillouin zone, in other words
to consider a two–gap model with a strong anisotropy [11].

Here we investigate the effects of the pseudogap on
the T = 0 K HTSC phase diagram. We choose to treat
the pseudogap at the phenomenological level in order to
understand its influence on the physical properties of the
superconducting state in HTSC. We consider that both
the pseudogap and the superconducting gap are of d-wave
symmetry and we neglect effects related to the anisotropy.
First we will analyze the role and the effects of the pseu-
dogap in the weak coupling limit, based on a modified
BCS-like model. The main result will be that the pres-
ence of the pseudogap induces a critical value for the at-
tractive electron–electron interaction responsible for the
formation of a superconducting phase. Secondly, we ex-
tend this model to the strong interaction limit, using an
approach similar to the crossover interpolation between
BCS-like superconductivity and BEC. In this limit we will
prove the existence of a metallic-like region in the phase
diagram oh cuprates, a region induced by the pseudogap
presence.

2 The model

The presence of the pseudogap in the energy spectrum of
the normal state electrons in HTSC materials will strongly
influence their physical properties not only in the nor-
mal state but also in the superconducting state. To ac-
count for such a change, we will treat the pseudogap at a
phenomenological level. Accordingly, we consider that the
normal state can be described by a modified one-particle
Green’s function which includes effects related to the pseu-
dogap presence [16],
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where Eg is a constant, φ(�k) = cos (kx)−cos (ky) is related
to the d-wave pseudogap symmetry, and G0(�k, ω) is the

free electron Green’s function. A similar form of the elec-
tronic self-energy was used by Randeria [5] to explain the
ARPES experimental results. We assume that such a form
of the self–energy will be valid regardless the value of the
coupling between the constituent electrons. The T = 0 K
mean-field equation describing the superconducting state
for the case of a fully separable attractive interaction in
the presence of the pseudogap is obtained following the
standard procedure [17]
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and ∆0 represents the superconducting gap. In the ab-
sence of the pseudogap (Eg = 0) equation (3) reduces
to the standard BCS form. To include effects beyond the
weak coupling limit, along with equation (3) we consider
also the T = 0 K density equation
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ω1(�k) = |ω+(�k)|, ω2(�k) = −|ω+(�k)|, ω3(�k) = |ω−(�k)|, and
ω4(�k) = −|ω−(�k)|. The two self-consistent equations (3)
and (6) will be solved together to include the strong inter-
action effects on the chemical potential, a procedure which
will allow us to interpolate between weak and strong cou-
pling limits.
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3 The pseudogap influence on the BCS–BEC
crossover

The possibility of a BCS–BEC crossover, namely an in-
terpolation between weak and strong attractive interac-
tion between the electrons, can be treated if we solve
self–consistently equations (3) and (6). In the weak cou-
pling limit (BCS case), the value of the chemical poten-
tial is fixed at the Fermi level, a self-consistent treat-
ment of equations (3) and (6) being irrelevant. However,
things are completely different in the strong coupling limit
(BEC case), were due to a strong interaction between the
electrons we expect a dramatic change in their chemical
potential, and accordingly the two equations have to be
considered at the same time. In the following we will dis-
cuss the solutions of the two coupled equations (3) and (6),
and possible effects due to the pseudogap presence on the
physical properties of HTSC as they result from these
solutions.

The superconducting gap, ∆0, as it results from equa-
tions (3) and (6) is plotted in Figure 1a as function of the
pseudogap value, Eg, for different values of the system
density. As the pseudogap value increases the supercon-
ductivity gap decreases, the superconducting phase being
destroyed, a result which was already reported in refer-
ence [18]. For Eg = 0, the gap equation (3) reduces to the
standard BCS gap equation. For the BCS case the gap
equation has a real solution for any value of the attractive
interaction V , the presence of the superconducting state
being signaled by a nonzero value for the superconducting
order parameter ∆0. When the self-consistent problem is
solved in the presence of a pseudogap, a critical attractive
interaction is required for the existence of a superconduct-
ing state. Figure 1b presents the superconducting gap pa-
rameter ∆0 as function of the attractive interaction V for
different values of the pseudogap parameter Eg. The plot
clearly identify a critical value for the interaction required
for a nonzero value of the gap parameter. Moreover, the
critical interaction value can be extracted as it follows.
Let us consider the limit situation in which ∆0 → 0. In
such circumstances, equation (3) becomes
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where E(�k) = ε(�k) − µ. Figure 2a presents results for the
critical interaction Vcr as function of the pseudogap pa-
rameter Eg for different values of the system density. The
results were obtained using a self-consistent calculation
which involves both equation (7) and the density equa-
tion (6). In the weak coupling case, when the chemical
potential is fixed at the Fermi level the density equation
becomes irrelevant, and the value of the critical interac-
tion Vcr can be obtained analytically. The corresponding
solutions has the form 1/Vcr = (m/4π) ln [0.892 W/(Eg)],
with W being a cutoff such that W � Eg. It is clear at
this point that for Eg → 0, Vcr → 0, which means that in
the absence of a pseudogap the superconducting state ex-
ists no matter how small the attractive electron-electron

Fig. 1. (a) The superconducting gap ∆0/t as function of
the pseudogap parameter Eg/t at different density values.
(b) The superconducting gap ∆0/t as function of the inter-
action strength for different values of Eg/t at a fixed density
ρ = 0.2. (For both figures a d-wave model including next near-
est neighbors hopping was considered (α′ = 0.2)).

interaction is. However, the presence of a pseudogap re-
quires a critical interaction for a nonzero superconducting
gap, meaning that if V < Vcr a metallic–like state will be
present in the HTSC phase diagram in the weak coupling
regime.

Figure 2b presents the chemical potential as function
of the attractive interaction strength V for different val-
ues of the pseudogap parameter Eg. The horizontal line
at µ/t = −3.2 represents the bottom of the tight-binding
band. It is well know that in the weak coupling regime,
the fermionic nature of the electronic system is conserved
despite the fact that electrons form pairs. Such a behavior
of the system is signaled by a value of the chemical poten-
tial above the bottom of the tight-binding band, equiva-
lent with a positive chemical potential for the continuous
model. On the other hand, in the strong coupling regime,
at high attractive interactions, the value of the chemical
potential for all curves is situated bellow this minimum of
the tight-binding band, the system manifesting bosonic–
like degrees of freedom. In this limit the attraction leads
to small sized electronic pairs which behave like compos-
ite bosons able to undergo a BEC. The situation becomes
much more complicated in the intermediate interaction
regime, were the system should be described by a crossover
theory which interpolates between the standard BCS and
BEC pictures.
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Fig. 2. (a) The required critical interaction Vcr as function
of the pseudogap parameter value Eg at different density val-
ues. (b) The chemical potential as function of the interaction
strength V for different values of the pseudogap parameter Eg.
The dashed horizontal line represents the minimum of the con-
duction band, values for the chemical potential below this line
being a signal of bosonic-like degrees of freedom. (For both
figures a d-wave model including next nearest neighbors inter-
actions was considered (α′ = 0.2).)

The density–interaction T = 0 K phase diagram of
the HTSC usually consists in two different regions, associ-
ated to fermionic and bosonic degrees of freedom, respec-
tively [19]. For the case of a system with s-wave symmetry
of the superconducting order parameter, it was proved
that a crossover between fermionic and bosonic degrees
of freedom is possible at any values of the system den-
sity [14]. On the other hand, the situation for the case
of a d-wave symmetry of the superconducting order pa-
rameter is much more controversial. den Hertog [20] and
Soares et al. [21] claim that a non-pairing region, metallic–
like phase, is present in the phase diagram at low attrac-
tive interactions. However, such a claim is in contradiction
with the standard d-wave solution of the weak coupling
BCS equation, which proves for the continuous model the
existence of a superconducting state regardless the value
of the attractive interaction between the electrons [22].

Figure 3 presents the effects of the pseudogap param-
eter Eg on the density–interaction phase diagram of the
HTSC at T = 0. As we previously discussed, the conse-
quences of the pseudogap presence in the normal state of
the HTSC are summarized by the need of a critical attrac-
tive interaction in order to form pairs which will be subject
of a BCS or BEC–like phase. Figure 3a presents a possible

Fig. 3. (a) Possible phase diagram (ρ vs. log (V/t)) for
a d-wave superconductor for different values of Eg. Metallic-like
(∆0/t = 0), BCS-like, and BE-like phases are properly identi-
fied. (b) A better insight of the differences induced by different
values of the pseudogap Eg. For both figures a d-wave model
including next nearest neighbors interactions was considered
(α′ = 0.2).

phase diagram for HTSC materials at different values of
the pseudogap parameter Eg. In the weak coupling limit,
when the interaction between the constituent electrons is
small (V < Vcr), a metallic–like state is present. Such a
state is identified by the condition∆0 = 0, i.e., a supercon-
ducting state is absent. However, calling this state metal-
lic, may be very inappropriate, as the presence of the pseu-
dogap will have a strong effect on the system properties,
meaning that the standard Landau theory of metals may
not work in this situation. In the strong coupling regime
(V > Vcr), the attractive interaction between the con-
stituent electrons may lead to the formation of electronic
pairs which can form a BCS or BEC–like state. The differ-
ence between the two possible states is made by the value
of the chemical potential, which at the border between the
two phases equals the energy value of the minimum of the
tight-binding band. As Figure 3 shows, bosonic–like de-
grees of freedom are possible only at small densities and
high attractive interactions. This result is in agreement
with previous calculations in the literature [6,7]. The be-
havior of the system looks similar for different nonzero val-
ues of the pseudogap parameter. For any value of the pseu-
dogap Eg all three phases of the phase diagram, metallic,
BCS, and BEC–like are present (see Fig. 3b). The phase
diagram was obtained considering only direct interactions
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between the constituent electrons of the system. Once the
electronic pairs are formed, especially in the strong cou-
pling limit, there is a possibility that pair–pair interaction
will be relevant to the problem, approximations beyond
the usual mean–field treatment being required [23].

4 Conclusions

In conclusion we have obtained the phase diagram of
a HTSC at T = 0 K in the case of a d-wave symme-
try of the order parameter. The role of the pseudogap
parameter Eg on the phase diagram was considered in a
phenomenological way, by introducing its effects as correc-
tions to the free electron state via an additional term in the
self-energy. The form of such a term can be justified by the
analysis of the experimental data obtained from ARPES
measurements [5]. Our calculations, both analytical and
numerical, proved that the pseudogap effects can be dras-
tic on the density–interaction phase diagram of HTSC, a
metallic–like state being identified in the weak coupling
regime. The question that this state is pure metallic, or is
of a different nature, is still open, further calculations be-
ing underway. Our calculations should be relevant for the
underdoped cuprates, where the presence of the pseudo-
gap was experimentally proved. However, if the presence
of the pseudogap will be proved also in the overdoped re-
gion of the HTSC temperature–doping phase diagram the
calculations presented here will correctly describe this re-
gion of the phase diagram too.
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Rendón, Phys. Rev. B 65, 174506 (2002)
22. K.A. Musaelian, J. Betouras, A.V. Chubukov, R. Joynt,

Phys. Rev. B 53, 3598 (1996)
23. V.N. Popov, Functional Integrals and Collective

Excitations (Cambridge University Press, Cambridge,
1987)


